Case Report

Renal carcinoma as a cause of sudden death in an aged horse

E. J. KNOWLES*, J. M. WITHERS, M. J. DAY† AND T. S. MAIR

Bell Equine Veterinary Clinic, Butchers Lane, Mereworth, Kent ME18 5GS; and †Langford Veterinary Diagnostics, School of Clinical Veterinary Science, Langford, Bristol BS40 5DU, UK.

Keywords: horse; renal carcinoma; tumour; sudden death

Summary

This report describes rupture of a primary renal carcinoma as a cause of sudden death of an aged horse that presented with mild clinical signs of colic. The case is considered in the context of the few reported cases in the veterinary literature. The most striking feature of this case was the absence of prodromal signs prior to a catastrophic rupture of the tumour during a diagnostic work-up.

Introduction

Renal neoplasia is rare in the horse and the presenting signs are varied and frequently nonspecific. Several types of renal tumour have been reported including nephroblastoma, transitional cell carcinoma and squamous cell carcinoma, although renal cell carcinomas are the most common (Schott 2004). Eighteen cases have been reported in detail in the veterinary literature since 1980. These reports illustrate the diagnostic challenge of this condition, in particular the nonspecific nature of the presenting signs and the tendency for the tumour to remain unnoticed until well advanced.

Case details

History

A 23-year-old Thoroughbred cross gelding was referred to Bell Equine Veterinary Clinic for investigation of colic of around 8 hours’ duration. The horse had appeared normal that morning and was seen grazing normally during the day. There was no history of recent medical problems or any management changes, although the horse had received long-term treatment with phenylbutazone (Equipalazone)1 for osteoarthritis at 2 mg/kg bwt per os s.i.d. Mild clinical signs of colic were seen when the horse was brought in from grazing; these were unresponsive to 4 mg/kg bwt phenylbutazone (Equipalazone) given orally. The referring veterinary surgeon examined the gelding, but the signs of mild discomfort persisted despite further medical treatment with detomidine hydrochloride (Equimidine)2, and butylscopolamine bromide with metamizole (Buscopan Compositum)3. The gelding was then referred for further evaluation.

Clinical examination

On admission the gelding was in good bodily condition, showed no signs of pain and was alert and reactive. He walked normally from the trailer but appeared weak. Initially the gelding was sweating profusely but this reduced after travelling rugs were removed. The heart rate was 50 beats/min and mucous membranes were slightly pale but peripheral pulse quality was normal and the extremities were warm. Rectal temperature and respiratory rate were normal. Gut sounds were present in all quadrants but slightly reduced compared with normal. On rectal palpation there was a large mass of gelatinous consistency in the left dorsal quadrant in the region of the left kidney, and the caudal abdomen felt unusually empty. A nasogastric tube was passed but no reflux was obtained.

Routine haematological and serum biochemical examinations revealed no abnormalities other than elevated glucose (8.9 mmol/l; reference range 2.6–6.5 mmol/l) and glutamate dehydrogenase (GLDH) (24.2 u/l; reference range 1.0–12.0 u/l).

A transabdominal ultrasound examination was started but not completed due to a rapid deterioration in the gelding’s condition. Initial findings showed normal small intestinal motility with no distension and normal intestinal wall thickness. There was no increase in peritoneal fluid. At this point the examination was stopped as the gelding suddenly became weaker and began staggering. His mucous membranes became very pale and he became ataxic, collapsed and began thrashing. Romifidine hydrochloride (Sedivet)3 was

*Author to whom correspondence should be addressed.
administered i.v. at 0.08 mg/kg bwt to provide sedation in an attempt to insert an i.v. catheter but this proved impossible and the gelding died after a few minutes.

Post mortem examination

Post mortem examination was performed within 30 min of death and revealed rupture of the caudal pole of the left kidney. This was markedly enlarged and gelatinous ([Figs 1 and 2](#)). There was extensive intra-abdominal haemorrhage and a number of unidentifiable friable masses were found free within the abdominal cavity. Grossly there were no signs of metastatic spread to any other organs. There was also a 180° torsion of the large colon close to the diaphragmatic and sternal flexures, but no visible signs of colonic distension or damage to the colon wall. The significance of this torsion is unclear.

Histopathology

Histopathological examination of several samples from the left kidney revealed a large area of neoplastic change consistent with renal carcinoma ([Fig 3](#)). The tumour was separated from areas of normal kidney by a fibrous band but there were numerous small clusters of neoplastic cells distant from the main tumour in the junctional margin. Further samples of the tumour showed areas of haemorrhage with prominent haemosiderophages and sub-capsular blood clots. There were further areas of largely fibrotic kidney with minimal remaining tubular architecture. Samples of the cranial pole of the left kidney were normal.

The unidentifiable friable masses lying free within the abdomen appeared to be sections of the renal tumour with neoplastic changes, and areas of haemorrhage and necrosis. The histological appearance of these was consistent with acute rupture of these masses from the main tumour ([Fig 4](#)). The right kidney was structurally normal and the liver and spleen had prominent haemosiderosis but normal architecture. Histologically there were no signs of metastatic spread.
Discussion

Renal carcinoma is a rare condition in the horse. The incidences of primary renal neoplasia and renal carcinoma have been reported as 0.11% and 0.055%, respectively (Haschek et al. 1980). Published reports highlight the variable and nonspecific presentations and clinical signs of this condition. The sudden death of this gelding is a stark reminder of the diagnostic challenges presented by renal carcinomas and by abdominal tumours in general, and of their tendency to present at an advanced stage of disease (East and Savage 1998; Schott 2004).

A search of the veterinary literature since 1980 revealed 22 cases of equine renal carcinoma, although only 18 have been described in detail (Berggren 1980; Haschek et al. 1981; Pomroy 1981; Brown and Holt 1984; van Amstel et al. 1984; Owen et al. 1986; Servantie et al. 1986; van Moi and Fransen 1986; West et al. 1987; Rhind et al. 1989; Baker et al. 2001; Rumbaugh et al. 2003; Swain et al. 2005; Hilton et al. 2008). No breed or sex predispositions are apparent from these cases. The ages of horses affected ranged from 4–21 years and the median age was 14 years.

Clinical signs of equine renal carcinomas are variable: weight loss was reported in 15/18 cases (83%), haematuria in 9/18 (50%) (although results of urinalysis were not recorded in 2 cases) and colic was reported in 7/18 (39%). Human renal carcinoma patients present with a wide variety of signs but many are asymptomatic until the disease is advanced (Oulumi and Richie 2004). Many reported cases of equine renal carcinoma presented with signs attributable to the primary tumour but a significant minority presented with complaints resulting from paraneoplastic syndromes or metastasis.

Baker et al. (2001) and Swain et al. (2005) describe intermittent hypoglycaemia as a paraneoplastic effect of renal carcinomas. This is a well described paraneoplastic syndrome of man and dogs (Leafier et al. 1985; Chung et al. 1986) and is thought to result from the production of an abnormal form of insulin-like growth factor 2 (IGF-2) (Baxter et al. 1995). In the horse paraneoplastic hypoglycaemia has been also described in association with an insulinoma (Ross et al. 1983) but is more commonly associated with non-islet hepatocellular carcinomas (Ogilvie 1998). Human renal carcinomas have been associated with a wide range of paraneoplastic syndromes and have consequently been labelled the ‘internists tumour’ (Gold et al. 1996). No paraneoplastic signs were evident in the case described here.

Rhind et al. (1999) and Rumbaugh et al. (2003) describe cases that presented with signs caused by metastasis (to the oral cavity and elbow respectively) rather than the primary tumour. Unusually, the present case showed no evidence of metastasis. Reports suggest that metastasis of equine renal carcinoma occurs commonly and was grossly evident at post mortem examination in 13/18 cases (72%). Sites for metastasis varied but most frequently involved the liver and lungs.

In contrast to previously reported cases, this case presented with mild clinical signs of colic of only a few hours’ duration. The authors consider that these were likely to have been caused by sub-capsular bleeding from the renal tumour. In the absence of distension or colonic wall damage, the mild colon torsion identified post mortem was considered unlikely to have been clinically significant. No other prodromal signs were recognised. There is only one previous report of renal carcinoma causing death without prodromal signs. A Thoroughbred gelding died during recovery from anaesthesia for laryngeal surgery as a result of compression of the caudal vena cava by the tumour (Robertson et al. 1985).

The case described here also had no significant abnormalities on haematological or serum biochemical evaluation. Most reports describe nonspecific haematological abnormalities, most frequently leucocytosis due to neutrophilia (9/18 cases). Serum urea and creatinine are often normal in cases of renal carcinoma due to the reserve functional capacity provided by the contralateral kidney. The condition is usually unilateral with just 3 reported cases of bilateral renal carcinoma in the horse (Berggren 1980; West et al. 1987; Rhind et al. 1999).

Whilst this case emphasises the diagnostic challenge presented by renal carcinomas, the sudden deterioration and death of this gelding prevented the completion of the diagnostic work-up. In common with 12 of the 18 previously reported cases (67%), a mass was palpable per rectum and, had time allowed, further diagnostic aids would have been used.

Transabdominal or transrectal ultrasonography may have allowed visualisation of the mass and ultrasound guided biopsies could have been obtained (although this would have carried a substantial risk). More recently, intra-abdominal renal ultrasonography has been performed via standing flank laparotomy prior to nephrectomy (Ferguson et al. 2007).

Haemoperitoneum may also be diagnosed ultrasonographically and is characterised by swirling hypo-echogenic, cellular fluid (Dechant et al. 2006). In this case haemoperitoneum was not identified ante mortem. It appears that the initial haemorrhage occurred beneath the renal or tumour capsule or was contained within the retroperitoneal space. Profuse abdominal haemorrhage only occurred when the tumour ruptured, perhaps precipitated by rectal palpation of the mass, despite the cautious approach of the examiner.

Abdominocentesis is a further diagnostic aid that may be employed in the assessment of colic and diagnosis of abdominal neoplasia. The presence of neoplastic cells in peritoneal fluid is a highly specific but insensitive indicator of abdominal neoplasia. In only 11/25 (44%) horses with intra-abdominal neoplasia were tumour cells identified by cytological examination of peritoneal fluid in a study by Zicker et al. (1990).

The outcome for equine renal carcinoma is universally poor but sudden death through acute haemorrhage is an unusual outcome. Brown and Holt (1984) also describe death due to haemorrhage from a renal carcinoma but unlike this case there was a history of chronic weight loss, depressed appetite, colic, polyuria and polydipsia. Most
reported cases died or were subjected to euthanasia shortly after diagnosis, with 2 notable exceptions. Owen et al. (1986) describe a Shire mare in which the course of the disease and associated hypercupraemia were followed for 11 months before euthanasia was necessary. Hilton et al. (2008) reported a 7 month survival time following a hand-assisted laparoscopic nephrectomy. No metastases were evident at the time of laparoscopy but the gelding was subjected to euthanasia 7 months later due to multifocal carcinomatosis. Ferguson et al. (2007) successfully treated a renal papillary adenoma in a Thoroughbred gelding by a similar technique. Theoretically, the current case could have been a candidate for such a procedure as no metastatic spread was evident grossly. This would have required much earlier diagnosis, but in this case, an earlier diagnosis (particularly if made on histological grounds) would probably have led to a recommendation of euthanasia due to the high metastatic rate attributed to renal carcinomas.

In conclusion, the present case illustrates the variation, and in some cases paucity, of clinical signs caused by renal carcinomas. In common with many other abdominal tumours, renal carcinomas may show no signs until very well advanced. In contrast to other reports this carcinoma showed no evidence of metastasis and could thus have been a potential candidate for unilateral nephrectomy. The ante mortem detection of metastasis can be extremely difficult and thus nephrectomy cannot be recommended for the majority of renal carcinomas.

Manufacturers' addresses

1 Dechra Veterinary Products, Shrewsbury, Shropshire, UK.
2 Fort Dodge Animal Health, Southampton, Hampshire, UK.
3 Boehringer Ingelheim Ltd, Bracknell, Berkshire, UK.

References

